If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-9x=38
We move all terms to the left:
3x^2-9x-(38)=0
a = 3; b = -9; c = -38;
Δ = b2-4ac
Δ = -92-4·3·(-38)
Δ = 537
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{537}}{2*3}=\frac{9-\sqrt{537}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{537}}{2*3}=\frac{9+\sqrt{537}}{6} $
| 7=k-24/7 | | 6(c-2)=72 | | 9=d+13/3 | | 4(x+9)=–20 | | -2+5w=13 | | 80=(9x+4)+(16x-4) | | 5-a=4 | | x/0.2+3=8 | | 5x+4-2x=(x=8) | | 10v-91=3v-14 | | -8=1+3m | | 5=-5+5u | | 0=80+(9x+4)+(16x-4) | | 64+-5x=24 | | j+19/5=7 | | 18=½(d+7) | | r+35=79 | | 7f-20=29 | | b/8-(-56)=68 | | 1x(3x+-9)=38 | | 91+-1x=87 | | s+28/10=-2 | | 6(t+4)=-1 | | u/7+42=44 | | p+21/9=4 | | 8(5x)=7x | | X2-y2=97 | | n+14/3=9 | | b/18=19 | | 3x+12+41+55=180 | | 90-3x=-30 | | g+18/3=7 |